Centre de diffusion de revues académiques mathématiques

 
 
 
 

Les cours du CIRM

Table des matières de ce fascicule | Article précédent
Alban Quadrat
An introduction to constructive algebraic analysis and its applications
Les cours du CIRM, 1 no. 2: Journées Nationales de Calcul Formel (2010), p. 281-471, doi: 10.5802/ccirm.11
Article PDF

Bibliographie

[1] S. A. Abramov, M. Bronstein, “On solutions of linear functional systems”, in Proceedings of ISSAC’01, 1-6, ACM Press, 2001.  MR 2044585
[2] M. Auslander, M. Bridger, Stable Module Theory, Memoirs of the American Mathematical Society, 94 American Mathematical Society, 1969.  MR 269685 |  Zbl 0204.36402
[3] R. Baer, “Erweiterung von Gruppen und ihren Isomorphismen”, Mathematische Zeitschrift, 38 (1934), 375-416.  MR 1545456 |  JFM 60.0079.04
[4] M. Barakat, D. Robertz, “homalg: An abstract package for homological algebra”, J. Algebra Appl., 7 (2008), 299-317, homalg project: http://wwwb.math.rwth-aachen.de/homalg/.  MR 2431811 |  Zbl 1151.13306
[5] M. Barakat, “Spectral filtrations via generalized morphisms”, http://arxiv.org/abs/0904.0240, 30/04/09, submitted for publication. arXiv
[6] M. A. Barkatou, “On rational solutions of systems of linear differential equations”, J. Symbolic computation, 28 (1999), 547-567.  MR 1731937 |  Zbl 0943.34008
[7] M. A. Barkatou, “Factoring systems of linear functional systems using eigenrings”, in Computer Algebra 2006, Latest Advances in Symbolic Algorithms, Proceedings of the Waterloo Workshop, Ontario, Canada (10-12/04/06), I. Kotsireas and E. Zima (Eds.), World Scientific, 22-42.  MR 2427719
[8] T. Becker, V. Weispfenning, Gröbner Bases. A Computational Approach to Commutative Algebra, Springer, NewYork, 1993.  MR 1213453 |  Zbl 0772.13010
[9] C. M. Bender, G. V. Dunne, L. R. Mead, Underdetermined systems of partial differential equations, J. Mathematical Physics, 41 (2000), 6388-6398.  MR 1779653 |  Zbl 0977.35036
[10] J. E. Bjork, Rings of Differential Operators, North Holland, 1979.  MR 549189 |  Zbl 0499.13009
[11] J. E. Bjork, Analytic ${\mathcal{D}}$-modules and Applications, Kluwer, 1993.  MR 1232191 |  Zbl 0805.32001
[12] Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz, “The MAPLE Package “Janet”: I. Polynomial Systems”, In the proceedings of Computer Algebra in Scientific Computing CASC 2003, V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (Eds.), 31-40, http://wwwb.math.rwth-aachen.de/Janet.
[13] A. Borel et al., Algebraic D-modules, Perspectives in Mathematics, vol. 2, Academic Press, 1987.  MR 882000 |  Zbl 0642.32001
[14] M. S. Boudellioua, A. Quadrat, “Serre’s reduction of linear functional systems”, INRIA report 7214, to appear in Mathematics in Computer Science, 2010.
[15] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, 1956.  MR 77480 |  Zbl 0075.24305
[16] F. Chyzak, A. Quadrat, D. Robertz, “Effective algorithms for parametrizing linear control systems over Ore algebras”, Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376.  MR 2233761 |  Zbl 1109.93018
[17] F. Chyzak, A. Quadrat, D. Robertz, “OreModules: A symbolic package for the study of multidimensional linear systems”, in the book Applications of Time-Delay Systems, J. Chiasson and J. -J. Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 2007, 233-264, OreModules project: http://wwwb.math.rwth-aachen.de/OreModules.  MR 2309473
[18] F. Chyzak, B. Salvy, “Non-commutative elimination in Ore algebras proves multivariate identities”, J. Symbolic Comput., 26 (1998), 187-227.  MR 1635242 |  Zbl 0944.05006
[19] T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional systems”, Linear Algebra Appl., 428 (2008), 324-381.  MR 2372596 |  Zbl 1131.15011
[20] T. Cluzeau, A. Quadrat, “OreMorphisms: A homological algebraic package for factoring and decomposing linear functional systems”, in the book Topics in Time-Delay Systems: Analysis, Algorithms and Control, J.-J. Loiseau, W. Michiels, S.-I. Niculescu and R. Sipahi (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 388, Springer, 2009, 179-196, OreMorphisms project: http://www-sop.inria.fr/members/Alban.Quadrat/OreMorphisms/index.html.  MR 2573753
[21] T. Cluzeau, A. Quadrat, “Serre’s reduction of linear partial differential systems based on holonomy”, to appear in the proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10).
[22] T. Cluzeau, A. Quadrat, “Duality, Auslander transpose, adjoints and stable ranks: A constructive approach”, in preparation, 2010.
[23] R. Courant, D. Hilbert, Methods of Mathematical Physics, Wiley Classics Library, Wiley, 1989.  MR 1013360 |  Zbl 0729.00007
[24] S. C. Coutinho, M. P. Holland, “Module structure of rings of differential operators”, Proc. London Math. Soc., 57 (1988), 417-432.  MR 960095 |  Zbl 0627.16020
[25] G. Culianez, Formes de Hermite et de Jacobson: Implémentations et applications, internship (INSA de Toulouse) under the supervision of A. Quadrat, INRIA Sophia Antipolis (06-07/05), Jacobson project: http://www-sop.inria.fr/members/Alban.Quadrat/Stages.html.
[26] F. Dubois, N. Petit, P. Rouchon, “Motion planning and nonlinear simulations for a tank containing a fluid”, in the proceedings of the 5th European Control Conference, Karlsruhe (Germany), 1999.
[27] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150, Springer-Verlag, 1994.  MR 1322960 |  Zbl 0819.13001
[28] K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Computational Differential Equations, Cambridge University Press, 1996.  MR 1414897 |  Zbl 0946.65049
[29] A. Fabiańska, A. Quadrat, “Applications of the Quillen-Suslin theorem in multidimensional systems theory”, in the book Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106, QuillenSuslin project: http://wwwb.math.rwth-aachen.de/QuillenSuslin/.  MR 2402709
[30] N. Fitchas, A. Galligo, “Nullstellensatz effectif et conjecture de Serre (Théorème de Quillen-Suslin) pour le calcul formel”, Math. Nachr., 149 (1990), 231-253.  MR 1124807 |  Zbl 0729.14001
[31] M. Fliess, “Some basic structural properties of generalized linear systems”, Systems & Control Letters, 15 (1990), 391-396.  MR 1084580 |  Zbl 0727.93024
[32] M. Fliess, J. Lévine, P. Martin, P. Rouchon, “Flatness and defect of nonlinear systems: introductory theory and examples”, Int. J. Control, 61 (1995), 1327-1361.  MR 1613557 |  Zbl 0838.93022
[33] S. Fröhler, U. Oberst, “Continuous time-varying linear systems”, Systems and Control Letters, 35 (1998), 97-110.  MR 1654885 |  Zbl 0909.93041
[34] A. Galligo, “Some algorithmic equations on ideals of differential operators”, in EUROCAL’85, vol. 2 (Linz 1985), Lecture Notes in Computer Science 204, Springer, 413-412.  MR 826576 |  Zbl 0634.16001
[35] E. Goursat, “Sur une généralisation du problème de Monge”, Ann. Fac. Sciences de Toulouse, 22 (1930), 249-295. Cedram |  MR 1508412 |  JFM 56.0410.02
[36] E. Goursat, “Sur quelques équations de Monge intégrables explicitement”, Annali della Scuola Normale di Pisa, Classe di Scienze 2e série, 1 (1932), 35-59. Numdam |  MR 1556668 |  JFM 58.0480.01
[37] E. Goursat, “Sur une équation de Monge à deux variables indépendantes”, Annali della Scuola Normale di Pisa, Classe di Scienze 2e série, 4 (1935), 15-33. Numdam |  MR 1556740 |  JFM 61.0515.02
[38] J. Hadamard, “Sur l’équilibre des plaques élastiques circulaires libres ou appuyées et celui de la sphère isotrope”, Annales Scientifiques de l’Ecole Normale Supérieure, 18 (1901), 313-324. Numdam |  JFM 32.0804.02
[39] A. Hillebrand, W. Schmale, “Towards an effective version of a theorem of Stafford”, J. Symbolic Comput., 32 (2001), 699-716.  MR 1866712 |  Zbl 1015.16030
[40] M. Janet, Leçons sur les systèmes d’équations aux dérivées partielles, Cahiers scientifiques IV, Gauthier-Villars, 1929.  JFM 55.0276.01
[41] J. Johnson, “Systems of $n$ partial differential equations in $n$ unknowns functions: the conjecture of M. Janet”, Trans. Amer. Math. Soc. 242 (1978), 329-334.  MR 491637 |  Zbl 0405.12022
[42] T. Kailath, Linear Systems, Prentice-Hall, 1980.  MR 569473 |  Zbl 0454.93001
[43] R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, 1969.  MR 255260 |  Zbl 0231.49001
[44] M. Kashiwara, Algebraic Study of Systems of Partial Differential Equations, Master Thesis, Tokyo Univ. 1970, Mémoires de la Société Mathématiques de France 63 (1995) (English translation). Numdam |  MR 1384226 |  Zbl 0877.35003
[45] M. Kashiwara, T. Kawai, T. Kimura, Foundations of algebraic analysis, Princeton Mathematical Series, vol. 37, Princeton University Press, Princeton, 1986.  MR 855641 |  Zbl 0605.35001
[46] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, 1973.  MR 568864 |  Zbl 0264.12102
[47] V. Kolmanovskii, V. Nosov, Stability of Functional Differential Equations. Academic Press, 1986.  MR 860947 |  Zbl 0593.34070
[48] H. Komatsu, “Relative cohomology of sheaves of solutions of differential equations”, in Hyperfunctions and Pseudo-Differential Equations, Lectures Notes in Mathematics 287, Springer, 1971, 192-263.  MR 393874 |  Zbl 0278.58010
[49] V. Kucera, Discrete Linear Control: The Polynomial Equation Approach, Wiley, Chichester 1979.  MR 573447 |  Zbl 0432.93001
[50] L. Landau, L. Lifschitz, Physique théorique, Tome 1: Mécanique, 4th edition, MIR.
[51] L. Landau, L. Lifschitz, Physique théorique, Tome 2: Théorie des champs, 4th edition, MIR, 1989.  MR 1020299 |  Zbl 0146.23803
[52] L. Landau, L. Lifschitz, Physique théorique, Tome 6: Mécanique des fluides, 2nd edition, MIR, 1989.
[53] L. Landau, L. Lifschitz, Physique théorique, Tome 7: Elasticité, 2nd edition, MIR, 1990, second edition.  MR 1085484
[54] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, 1999.  MR 1653294 |  Zbl 0911.16001
[55] T. Y. Lam, Serre’s Problem on Projective Modules, Springer Monograph in Mathematics, Springer Verlag, 2006.  MR 2235330 |  Zbl 1101.13001
[56] P. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467-490.  MR 235310 |  Zbl 0162.41103
[57] A. Leykin, “Algorithmic proofs of two theorems of Stafford”, J. Symbolic Comput., 38 (2004), 1535-1550.  MR 2169367 |  Zbl 1130.16304
[58] V. Levandovskyy, Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, PhD Thesis, University of Kaiserslautern, 2005.
[59] V. Levandovskyy, E. Zerz, “Obstructions to genericity in the study of parametric problems in control theory”, in Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics, 3, de Gruyter publisher, 2007, 127-149, Singular project: http://www.singular.uni-kl.de/.  MR 2402711
[60] Z. Lin, N. K. Bose, “A generalization of Serre’s conjecture and related issues”, Linear Algebra and Its Applications, 338 (2001), 125-138.  MR 1861117 |  Zbl 1017.13006
[61] A. Logar, B. Sturmfels, “Algorithms for the Quillen-Suslin theorem”, Journal of Algebra, 145 (1992), 231-239.  MR 1144671 |  Zbl 0747.13020
[62] H. Lombardi, I. Yengui, “Suslin’s algorithms for reduction of unimodular rows”, Journal of Symbolic Computation, 39 (2005), 707-717.  MR 2168615 |  Zbl 1120.13034
[63] H. Lombardi, “Dimenion de Krull explicite. Applications aux théorèmes de Kronecker, Bass, Serre et Forster”, Notes de cours, 14/07/05. http://hlombardi.free.fr/publis/publis.html.
[64] H. Lombardi, C. Quitté, Algèbre Commutative, Méthodes constructives (Modules projectifs de type fini), book, to appear http://hlombardi.free.fr/publis/publis.html.
[65] S. MacLane, Homology, Springer Verlag, 1995.  MR 1344215 |  Zbl 0133.26502
[66] P. Maisonobe, C. Sabbah, ${\mathcal{D}}$-modules cohérents and holonomes, Hermann, 1993.  MR 1603676
[67] B. Malgrange, “Systèmes à coefficients constants”, Séminaire Bourbaki 1962/63, 1-11. Numdam |  Zbl 0141.27304
[68] B. Malgrange, “Ouverts concaves et théorèmes de dualité pour les systèmes différentiels à coefficients constants”, Comm. Math. Helv., 46 (1971), 487-499.  MR 304381 |  Zbl 0229.35015
[69] B. Malgrange, “Lettre à P. Rouchon”, 26/01/00, private communication with A. Quadrat, 14/02/00.
[70] F. Malrait, P. Martin, P. Rouchon, “Dynamic feedback transformations of controllable linear time-varying systems”, in Lecture Notes in Control and Inform. Sci. 259, Springer, 2001, 55-62.  MR 1806163 |  Zbl 1056.93513
[71] J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, American Mathematical Society, 2000.  MR 1811901 |  Zbl 0980.16019
[72] G. Monge, “Où l’on fait voir que les équations aux différences ordinaires, pour lesquelles les conditions d’intégrabilité ne sont pas satisfaites, sont suscesptibles d’une véritable intégration, et que c’est de cette intégration que dépend celle des équations aux différences partielles élevées”, Mémoire de l’Académie Royale des Sciences, Paris, 1784, 502-576.
[73] H. Mounier, Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, PhD thesis, University of Paris XI, 1995.
[74] H. Mounier, J. Rudolph, M. Petitot, M. Fliess, “A flexible rod as a linear delay system”, in Proceedings of 3rd European Control Conference, Rome (Italy), 1995, 3676-3681.
[75] H. Mounier, P. Rouchon, J. Rudolph, “Some examples of linear systems with delays”, European Journal of Automation, 31 (1997), 911-925.
[76] H. Mounier, J. Rudolph, M. Fliess, P. Rouchon, “Tracking control of a vibrating string with an interior mass viewed as delay system”, ESAIM COCV, 3 (1998), 315-321. Numdam |  MR 1644431 |  Zbl 0906.73046
[77] T. Oaku, N. Takayama, “Algorithms for $D$-modules-restriction, tensor product, localization, and local cohomology groups”, J. Pure Appl. Algebra, 156 (2001), 267-308.  MR 1808827 |  Zbl 0983.13008
[78] U. Oberst, “Multidimensional constant linear systems”, Acta Appl. Math., 20 (1990), 1-175.  MR 1078671 |  Zbl 0715.93014
[79] N. Petit, P. Rouchon, “Dynamics and solutions to some control problems for water-tank systems”, IEEE Trans. Automat. Control, 47 (2002), 595-609.  MR 1893517
[80] H. K. Pillai, S. Shankar, “A behavioural approach to control of distributed systems”, SIAM Journal on Control and Optimization, 37 (1999), 388-408.  MR 1655859 |  Zbl 0919.93020
[81] J. W. Polderman, J. C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach, TAM 26, Springer, 1998.  MR 1480665 |  Zbl 0940.93002
[82] J.-F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, 1978.  MR 517402 |  Zbl 0401.58006
[83] J.-F. Pommaret, Differential Galois Theory, Gordon and Breach, 1983.  MR 720863 |  Zbl 0539.12013
[84] J.-F. Pommaret, Partial Differential Equations and Group Theory: New Perspectives for Applications, Kluwer, 1994.  MR 1308976 |  Zbl 0808.35002
[85] J.-F. Pommaret, Partial Differential Control Theory, Kluwer Academic Publishers, Mathematics and Its Applications, 2001.  MR 1853969 |  Zbl 1079.93001
[86] J.-F. Pommaret, “Algebraic analysis of control systems defined by partial differential equations”, in the book Advanced Topics in Control Systems Theory, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley (Eds), Lecture Notes in Control and Information Sciences (LNCIS) 311, Springer, 2005, 155-223.  MR 2130106 |  Zbl 1167.93328
[87] J.-F. Pommaret, A. Quadrat, “Generalized Bézout identity”, Appl. Algebra Engrg. Comm. Comput., 9 (1998), 91-116.  MR 1636916 |  Zbl 1073.93516
[88] J.-F. Pommaret, A. Quadrat, “Localization and parametrization of linear multidimensional control systems”, Systems & Control Letters, 37 (1999), 247-260.  MR 1751255 |  Zbl 0948.93016
[89] J.-F. Pommaret, A. Quadrat, “Algebraic analysis of linear multidimensional control systems”, IMA J. Math. Control Inform., 16 (1999), 275-297.  MR 1706658 |  Zbl 1158.93319
[90] J.-F. Pommaret, A. Quadrat, “Formal elimination for multidimensional systems and applications to control theory”, Math. Control, Signal and Systems, 13 (2000), 193-215.  MR 1784263 |  Zbl 1120.93312
[91] J.-F. Pommaret, A. Quadrat, “Equivalences of linear control systems”, Proceedings of MTNS 2000, Perpignan (France).  MR 1803511
[92] J.-F. Pommaret, A. Quadrat, “A functorial approach to the behaviour of multidimensional control systems”, Int. J. Appl. Math. Comput. Sci., 13 (2003), 7-13.  MR 1986488 |  Zbl 1040.93510
[93] J.-F. Pommaret, A. Quadrat, “A differential operator approach to multidimensional optimal control”, Int. J. Control, 77 (2004), 821-836.  MR 2082176 |  Zbl 1136.93359
[94] M. van der Put, M. F. Singer, Galois Theory of Linear Differential Equations, Grundlehren der mathematischen Wissenschaften, 328, Springer, 2003.  MR 1960772 |  Zbl 1036.12008
[95] A. Quadrat, “Extended Bézout identities”, Proceedings of European Control Conference, Porto (Portugal), (04-07/09/01).
[96] A. Quadrat, “The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part I: (Weakly) doubly coprime factorizations”, SIAM J. Control Optim., 42 (2003), 266-299.  MR 1982745 |  Zbl 1035.93017
[97] A. Quadrat, “Purity filtration of general linear systems of partial differential equations”, submitted for publication, INRIA report, 2010.
[98] A. Quadrat, “Purity filtration of $n$-dimensional linear systems”, to appear in the proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10).
[99] A. Quadrat, “Extendability of multidimensional linear systems”, to appear in the Proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10).
[100] A. Quadrat, “Systems and Structures: An algebraic analysis approach to mathematical systems theory”, book in preparation, 2010.
[101] A. Quadrat, D. Robertz, “Parametrizing all solutions of uncontrollable multidimensional linear systems”, Proceedings of 16th IFAC World Congress, Prague (Czech Republic), (04-08/07/05).
[102] A. Quadrat, D. Robertz, “On the Monge problem and multidimensional optimal control”, Proceedings of MTNS 2006, Kyoto (Japan), (20-24/07/06).
[103] A. Quadrat, D. Robertz, “Computation of bases of free modules over the Weyl algebras”, J. Symbolic Comput., 42 (2007), 1113-1141, Stafford project (http://wwwb.math.rwth-aachen.de/OreModules).  MR 2368075 |  Zbl 1137.16002
[104] A. Quadrat, D. Robertz, “On the Baer extension problem for multidimensional linear systems”, INRIA report 6307, 2007, http://hal.inria.fr/inria-00175272, submitted for publication.
[105] A. Quadrat, D. Robertz, “Baer’s extension problem for multidimensional linear systems”, Proceedings of MTNS 2008, Virginia (USA), (28/07-01/08/08).
[106] A. Quadrat, D. Robertz, “Controllability and differential flatness of linear analytic ordinary differential systems”, to appear in the Proceedings of MTNS 2010, Budapest (Hungary) (05-07/07/10).
[107] D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 167-171.  MR 427303 |  Zbl 0337.13011
[108] J. F. Ritt, Differential Algebra, Dover, 1996.  MR 201431 |  Zbl 0141.03801
[109] D. Robertz, “Janet bases and applications”, in the book Groebner Bases in Symbolic Analysis, M. Rosenkranz, D. Wang, D. (eds.), Radon Series on Computation and Applied Mathematics 2, de Gruyter publisher, 2007, 139-168, JanetOre project: http://wwwb.math.rwth-aachen.de/~daniel/index.html.  MR 2394772 |  Zbl 1130.13019
[110] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2nd edition, 2009.  MR 2455920 |  Zbl 1157.18001
[111] J. T. Stafford, “Module structure of Weyl algebras”, J. London Math. Soc., 18 (1978), 429-442.  MR 518227 |  Zbl 0394.16001
[112] J.-P. Serre, “Faisceaux algébriques cohérents”, Annals of Mathematics, 61 (1955), 197-278.  MR 68874 |  Zbl 0067.16201
[113] J.-P. Serre, “Sur les modules projectifs”, Séminaire Dubreil-Pisot, vol. 2, 1960/1961, in Oeuvres, Collected Papers, Vol. II 1960-1971, Springer, 1986, 23-34. Numdam |  Zbl 0132.41301
[114] M. F. Singer, “Testing reducibility of linear differential operators: a group theoretic perspective”, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104.  MR 1462491 |  Zbl 0999.12007
[115] A. Suslin, “The projective modules are free over polynomial rings”, Dklady-Soviet Math., 229 (1976), 1063-1066.  MR 469905 |  Zbl 0354.13010
[116] H. Tsai, U. Walther, “Computing homomorphisms between holonomic $D$-modules”, J. Symbolic Comput. 32 (2001), 597-617.  MR 1866706 |  Zbl 1010.16023
[117] K. Washizu, Variational Methods in Elasticity & Plasticity, Pergammon Press, 3rd, 1982.  MR 391680 |  Zbl 0498.73014
[118] J. Wood, “Modules and behaviours in $n$D systems theory”, Multidimensional Systems and Signal Processing, 11 (2000), 11-48.  MR 1775208 |  Zbl 0963.93015
[119] N. Yoneda, “On Ext and exact sequences”, J. Fac. Sci. Univ. Tokyo Sect. I, 8 (1960), 507-576.  MR 225854 |  Zbl 0163.26902
[120] P. Zervos, Le problème de Monge, Mémorial des sciences mathématiques, fascicule LIII, Gauthier-Villars, 1932.  Zbl 0004.00805 |  JFM 58.0478.01
[121] E. Zerz, Topics in Multidimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences 256, Springer, 2000.  MR 1781175 |  Zbl 1002.93002
[122] E. Zerz, “An algebraic analysis approach to linear time-varying systems”, IMA J. Math. Control Inform., 23 (2006), 113-126.  MR 2212264 |  Zbl 1106.93019
Copyright Cellule MathDoc 2017 | Crédit | Plan du site