Centre de diffusion de revues académiques mathématiques

 
 
 
 

Les cours du CIRM

Table des matières de ce fascicule | Article précédent
Joris van der Hoeven
Calcul analytique
Les cours du CIRM, 2 no. 1: Journées Nationales de Calcul Formel (2011), Exp. No. 4, 85 p., doi: 10.5802/ccirm.16
Article PDF

Bibliographie

[1] O. Aberth. Computable analysis. McGraw-Hill, New York, 1980.  Zbl 0461.03015
[2] G. Alefeld and J. Herzberger. Introduction to interval analysis. Academic Press, New York, 1983.  MR 733988
[3] ANSI/IEEE. IEEE standard for binary floating-point arithmetic. Technical report, ANSI/IEEE, New York, 2008. ANSI-IEEE Standard 754-2008. Revision of IEEE 754-1985, approved on June 12, 2008 by IEEE Standards Board.
[4] D. Bates, J. Hauenstein, A. Sommese, and C. Wampler. Bertini : Software for numerical algebraic geometry. http://www.nd.edu/~sommese/bertini/, 2006.
[5] C. Beltrán and L.M. Pardo. Smale’s 17th problem : Average polynomial time to compute affine and projective solutions. Journal of the AMS, 2008. To appear.  Zbl 1206.90173
[6] D. Bini and V.Y. Pan. Polynomial and matrix computations. Vol. 1. Birkhäuser Boston Inc., Boston, MA, 1994. Fundamental algorithms.  MR 1289412 |  Zbl 0809.65012
[7] D. A. Bini and G. Fiorentino. Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms, 23 :127–173, 2000.  MR 1772050 |  Zbl 1018.65061
[8] E. Bishop and D. Bridges. Foundations of constructive analysis. Die Grundlehren der mathematische Wissenschaften. Springer, Berlin, 1985.  MR 804042 |  Zbl 0656.03042
[9] J. Blanck, V. Brattka, and P. Hertling, editors. Computability and complexity in analysis, volume 2064 of Lect. Notes in Comp. Sc., Berlin, Heidelberg, 2001. Springer.  MR 1893067
[10] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic. Fast computation of power series solutions of systems of differential equations. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, pages 1012–1021, New Orleans, Louisiana, U.S.A., January 2007.  MR 2485252
[11] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In Proceedings of ISSAC 2003, pages 37–44. ACM, 2003.  Zbl 1072.68649
[12] B.L.J. Braaksma. Multisummability and Stokes multipliers of linear meromorphic differential equations. J. Diff. Eq, 92 :45–75, 1991.  MR 1113588 |  Zbl 0729.34005
[13] R.P. Brent and H.T. Kung. $O ((n \log n)^{3 / 2})$ algorithms for composition and reversion of power series. In J.F. Traub, editor, Analytic Computational Complexity, Pittsburg, 1975. Proc. of a symposium on analytic computational complexity held by Carnegie-Mellon University.  Zbl 0342.65010
[14] R.P. Brent and H.T. Kung. Fast algorithms for composition and reversion of multivariate power series. In Proc. Conf. Th. Comp. Sc., pages 149–158, Waterloo, Ontario, Canada, August 1977. University of Waterloo.  Zbl 0411.68043
[15] R.P. Brent and H.T. Kung. Fast algorithms for manipulating formal power series. Journal of the ACM, 25 :581–595, 1978.  MR 520733 |  Zbl 0388.68052
[16] B. Buchberger. Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem null-dimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.
[17] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28 :693–701, 1991.  MR 1129288 |  Zbl 0766.68055
[18] D.V. Chudnovsky and G.V. Chudnovsky. Computer algebra in the service of mathematical physics and number theory (computers in mathematics, stanford, ca, 1986). In Lect. Notes in Pure and Applied Math., volume 125, pages 109–232, New-York, 1990. Dekker.  MR 1068536 |  Zbl 0712.11078
[19] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Computat., 19 :297–301, 1965.  MR 178586 |  Zbl 0127.09002
[20] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In Proc. of the $19^{th}$ Annual Symposium on Theory of Computing, pages 1–6, New York City, may 25–27 1987.
[21] Jean-Pierre Dedieu. Points fixes, zéros et la méthode de Newton. Number 54 in Mathématiques et Applications. SMAI-Springer Verlag.  MR 2510891 |  Zbl 1095.65047
[22] J. Denef and L. Lipshitz. Decision problems for differential equations. The Journ. of Symb. Logic, 54(3) :941–950, 1989.  MR 1011182 |  Zbl 0683.03039
[23] F.J. Drexler. Eine Methode zur Berechnung sämtlicher Lösungen von Polynomgleichungssystemen. Numer. Math., 29(1) :45–58, 1977.  MR 483386 |  Zbl 0352.65023
[24] C. Durvye. Algorithmes pour la décomposition primaire des idéaux polynomiaux de dimension nulle donnés en évaluation. PhD thesis, Univ. de Versailles (France), 2008.
[25] J. Écalle. L’accélération des fonctions résurgentes (survol). Unpublished manuscript, 1987.
[26] J. Écalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Hermann, collection : Actualités mathématiques, 1992.  MR 1399559
[27] J. Écalle. Six lectures on transseries, analysable functions and the constructive proof of Dulac’s conjecture. In D. Schlomiuk, editor, Bifurcations and periodic orbits of vector fields, pages 75–184. Kluwer, 1993.  MR 1258519 |  Zbl 0814.32008
[28] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1–3) :61–88, 1999.  MR 1700538 |  Zbl 0930.68174
[29] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4) :329–344, 1993.  MR 1263871 |  Zbl 0805.13007
[30] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing (STOC 2007), pages 57–66, San Diego, California, 2007.  MR 2402428 |  Zbl 1179.68198
[31] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2-nd edition, 2002.  MR 1689167 |  Zbl 1055.68168
[32] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “one sugar cube, please” or selection strategies in the buchberger algorithm. In S. Watt, editor, Proc. ISSACâĂŹ91, pages 49–54, New York, 1991. ACM Press.  Zbl 0933.68161
[33] M. Giusti, K. Hägele, J. Heintz, J.E. Morais, J.L Monta na, and L.M. Pardo. Lower bounds for diophantine approximation. Journal of Pure and Applied Algebra, 117–118 :277–317, 1997.  MR 1457843 |  Zbl 0871.68101
[34] M. Giusti, J. Heintz, J.E. Morais, and L.M. Pardo. When polynomial equation systems can be solved fast ? In G. Cohen, M. Giusti, and T. Mora, editors, Proc. AAECC’11, volume 948 of Lecture Notes in Computer Science. Springer Verlag, 1995.  MR 1448166 |  Zbl 0902.12005
[35] X. Gourdon. Combinatoire, algorithmique et géométrie des polynômes. PhD thesis, École polytechnique, 1996.
[36] A. Grzegorczyk. Computable functionals. Fund. Math., 42 :168–202, 1955.  MR 86756 |  Zbl 0066.26001
[37] A. Grzegorczyk. On the definition of computable functionals. Fund. Math., 42 :232–239, 1955.  MR 86755 |  Zbl 0067.00301
[38] A. Grzegorczyk. On the definitions of computable real continuous functions. Fund. Math., 44 :61–71, 1957.  MR 89809 |  Zbl 0079.24801
[39] G. Hanrot, V. Lefèvre, K. Ryde, and P. Zimmermann. MPFR, a C library for multiple-precision floating-point computations with exact rounding. http://www.mpfr.org, 2000.
[40] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied interval analysis. Springer, London, 2001.  MR 1989308 |  Zbl 1023.65037
[41] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers on automata. Soviet Physics Doklady, 7 :595–596, 1963.
[42] R.B. Kearfott. An interval step control for continuation methods. SIAM J. Numer. Anal., 31(3) :892–914, 1994.  MR 1275119 |  Zbl 0809.65050
[43] R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehler-schranken. Computing, 4 :187–201, 1969.  MR 255046 |  Zbl 0187.10001
[44] V. Kreinovich, A.V. Lakeyev, J. Rohn, and P.T. Kahl. Computational Complexity and Feasibility of Data Processing and Interval Computations. Springer, 1997.
[45] B. Lambov. Interval arithmetic using sse-2. In Peter Hertling, Christoph Hoffmann, Wolfram Luther, and Nathalie Revol, editors, Reliable Implementation of Real Number Algorithms : Theory and Practice, volume 5045 of Lecture Notes in Computer Science, pages 102–113. Springer Berlin/Heidelberg, 2008.  Zbl 1165.65339
[46] G. Lecerf. Une alternative aux méthodes de réécriture pour la résolution des syst$\grave{\text{m}}$es algébriques. PhD thesis, École polytechnique, 2001.
[47] A. Leykin. NAG. http://www.math.uic.edu/~leykin/NAG4M2, 2009. Macaulay 2 package for numerical algebraic geometry.
[48] Anton Leykin, Jan Verschelde, and Ailing Zhao. Algorithms in algebraic geometry, chapter Higher-order deflation for polynomial systems with isolated singular solutions, pages 79–97. Springer, New York, 2008.  MR 2397938 |  Zbl 1138.65038
[49] K. Makino and M. Berz. Remainder differential algebras and their applications. In M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Computational differentiation : techniques, applications and tools, pages 63–74, SIAM, Philadelphia, 1996.  MR 1431042 |  Zbl 0867.68062
[50] K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-based validated integrators. Technical Report MSU Report MSUHEP 40910, Michigan State University, 2004.
[51] A. Mantzaflaris and B. Mourrain. Deflation and certified isolation of singular zeros of polynomial systems. In A. Leykin, editor, Proc. ISSAC’11, pages 249–256, San Jose, CA, US, Jun 2011. ACM New York.
[52] J. Martinet and J.-P. Ramis. Elementary acceleration and multisummability. Ann. Inst. Henri Poincaré, 54(4) :331–401, 1991. Numdam |  MR 1128863 |  Zbl 0748.12005
[53] R.E. Moore. Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions to ordinary differential equation. In L.B. Rall, editor, Error in Digital Computation, volume 2, pages 103–140. John Wiley, 1965.  MR 185839 |  Zbl 0202.45101
[54] R.E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, N.J., 1966.  MR 231516 |  Zbl 0176.13301
[55] A.P. Morgan. Solving polynomial systems using continuation for] engineering and scientific problems. Prentice-Hall, Englewood Cliffs, N.J., 1987.  MR 1049872 |  Zbl 0733.65031
[56] Jean-Michel Muller. Elementary Functions, Algorithms and Implementation. Birkhauser Boston, Inc., 2006.  MR 2175068 |  Zbl 1089.65016
[57] A. Neumaier. Interval methods for systems of equations. Cambridge university press, Cambridge, 1990.  MR 1100928 |  Zbl 1152.65054
[58] V. Pan. How to multiply matrices faster, volume 179 of Lect. Notes in Math. Springer, 1984.  MR 765701 |  Zbl 0548.65022
[59] V. Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros. Comput. Math. Appl., 31(12) :97–138, 1996.  MR 1418708 |  Zbl 0859.65045
[60] V. Y. Pan. Univariate polynomials : nearly optimal algorithms for numerical factorization and root-finding. J. Symbolic Comput., 33(5) :701–733, 2002.  MR 1919911 |  Zbl 1004.65061
[61] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.  Zbl 0437.65036
[62] S.M. Rump. Fast and parallel interval arithmetic. BIT, 39(3) :534–554, 1999.  MR 1708669 |  Zbl 0942.65048
[63] S.M. Rump. Verification methods : Rigorous results using floating-point arithmetic. Acta Numerica, 19 :287–449, 2010.  MR 2652784
[64] L. Schlesinger. Handbuch der Theorie der linearen Differentialgleichungen, volume I. Teubner, Leipzig, 1895.  JFM 29.0256.01
[65] L. Schlesinger. Handbuch der Theorie der linearen Differentialgleichungen, volume II. Teubner, Leipzig, 1897.  JFM 28.0260.04
[66] A. Schönhage. The fundamental theorem of algebra in terms of computational complexity. Technical report, Math. Inst. Univ. of Tübingen, 1982.
[67] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7 :281–292, 1971.  MR 292344 |  Zbl 0223.68007
[68] Alexandre Sedoglavic. Méthodes seminumériques en algèbre différentielle  ; applications à l’étude des propriétés structurelles de systèmes différentiels algébriques en automatique. PhD thesis, École polytechnique, 2001.
[69] M. Shub and S. Smale. Computational complexity. On the geometry of polynomials and a theory of cost. I. Ann. Sci. École Norm. Sup. (4), 18(1) :107–142, 1985. Numdam |  MR 803197 |  Zbl 0603.65027
[70] M. Shub and S. Smale. Computational complexity : on the geometry of polynomials and a theory of cost. II. SIAM J. Comput., 15(1) :145–161, 1986.  MR 822199 |  Zbl 0625.65036
[71] S. Smale. The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. (N.S.), 4(1) :1–36, 1981. Article |  MR 590817 |  Zbl 0456.12012
[72] S. Smale. Newton method estimates from data at one point. In R. E. Ewing, K. I. Gross, and C. F. Martin, editors, In the Merging of Disciplines : New Directions in Pure, Applied, and Computational Mathematics, pages 185–196. Springer-Verlag, 1986.  MR 870648 |  Zbl 0613.65058
[73] A.J. Sommese and C.W. Wampler. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, 2005.  MR 2160078 |  Zbl 1091.65049
[74] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13 :352–356, 1969.  MR 248973 |  Zbl 0185.40101
[75] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Maths. Soc., 2(42) :230–265, 1936.  JFM 62.1059.03
[76] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor, Proc. ISSAC ’97, pages 17–20, Maui, Hawaii, July 1997.  Zbl 0932.68135
[77] J. van der Hoeven. Fast evaluation of holonomic functions. TCS, 210 :199–215, 1999.  MR 1650888 |  Zbl 0912.68081
[78] J. van der Hoeven. Fast evaluation of holonomic functions near and in singularities. JSC, 31 :717–743, 2001.  MR 1834006 |  Zbl 0982.65024
[79] J. van der Hoeven. Relax, but don’t be too lazy. JSC, 34 :479–542, 2002.  MR 1943041 |  Zbl 1011.68189
[80] J. van der Hoeven. Computations with effective real numbers. TCS, 351 :52–60, 2006.  MR 2201092 |  Zbl 1086.65045
[81] J. van der Hoeven. Around the numeric-symbolic computation of differential Galois groups. JSC, 42 :236–264, 2007.  MR 2284295 |  Zbl pre05203522
[82] J. van der Hoeven. Efficient accelero-summation of holonomic functions. JSC, 42(4) :389–428, 2007.  MR 2317557 |  Zbl 1125.34072
[83] J. van der Hoeven. New algorithms for relaxed multiplication. JSC, 42(8) :792–802, 2007.  MR 2345837 |  Zbl 1130.68103
[84] J. van der Hoeven. Fast composition of numeric power series. Technical Report 2008-09, Université Paris-Sud, Orsay, France, 2008.
[85] J. van der Hoeven. Making fast multiplication of polynomials numerically stable. Technical Report 2008-02, Université Paris-Sud, Orsay, France, 2008.
[86] J. van der Hoeven. Newton’s method and FFT trading. JSC, 45(8) :857–878, 2010.  MR 2657669 |  Zbl 1192.13017
[87] J. van der Hoeven. Efficient root counting for analytic functions on a disk. Technical report, HAL, 2011. http://hal.archives-ouvertes.fr/hal-00583139/fr/.
[88] J. van der Hoeven. Reliable homotopy continuation. Technical report, HAL, 2011. http://hal.archives-ouvertes.fr/hal-00589948/fr/.
[89] J. van der Hoeven, G. Lecerf, B. Mourain, et al. Mathemagix, 2002. http://www.mathemagix.org.
[90] J. Verschelde. Homotopy continuation methods for solving polynomial systems. PhD thesis, Katholieke Universiteit Leuven, 1996.  MR 2714998
[91] J. Verschelde. PHCpack : A general-purpose solver for polynomial systems by homotopy continuation. ACM Transactions on Mathematical Software, 25(2) :251–276, 1999. Algorithm 795.  Zbl 0961.65047
[92] J.W. von Gudenberg. Interval arithmetic on multimedia architectures. Reliable Computing, 8(4), 2002.  Zbl 0999.65029
[93] K. Weihrauch. Computable analysis. Springer-Verlag, Berlin/Heidelberg, 2000.  MR 1795407 |  Zbl 0956.68056
Copyright Cellule MathDoc 2017 | Crédit | Plan du site