Center for diffusion of mathematic journals

 
 
 
 

Les cours du CIRM

Table of contents for this issue | Previous article | Next article
Guido Pezzini
Lectures on spherical and wonderful varieties
Les cours du CIRM, 1 no. 1: Hamiltonian Actions: invariants et classification (2010), p. 33-53, doi: 10.5802/ccirm.3
Article PDF | 2 citations in Cedram
Class. Math.: 14J50, 14L30, 14M17

Résumé - Abstract

These notes contain an introduction to the theory of spherical and wonderful varieties. We describe the Luna-Vust theory of embeddings of spherical homogeneous spaces, and explain how wonderful varieties fit in the theory.

Bibliography

[A83] D.N. Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78.  MR 739893 |  Zbl 0537.14033
[B09] P. Bravi, Classification of spherical varieties, in this volume Cedram
[BL08] P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type $\mathsf F_4$, arXiv:0812.2340v1. arXiv
[Br89] M. Brion, On spherical varieties of rank one, CMS Conf. Proc. 10 (1989), 31–41.  MR 1021273 |  Zbl 0702.20029
[Br90] M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143.  MR 1068418 |  Zbl 0729.14038
[Br97] M. Brion, Variétés sphériques, http://www-fourier.ujf-grenoble.fr/$\sim $mbrion/spheriques.ps
[Br09] M. Brion, Introduction to actions of algebraic groups, in this volume. Cedram
[DP83] C. De Concini, C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer, Berlin, 1983, 1–44.  MR 718125 |  Zbl 0581.14041
[F93] W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993.  MR 1234037 |  Zbl 0813.14039
[HS82] A. Huckleberry, D. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. of Math. 19 (1982), 763–786. Article |  MR 687772 |  Zbl 0507.32023
[H75] J. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg, 1975.  MR 396773 |  Zbl 0325.20039
[K91] F. Knop., The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 225–249, Manoj Prakashan, Madras, 1991.  MR 1131314 |  Zbl 0812.20023
[K96] F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.  MR 1311823 |  Zbl 0862.14034
[KKLV89] F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie (H. Kraft, P. Slodowy, T. Springer eds.) DMV-Seminar 13, Birkhäuser Verlag (Basel-Boston) (1989) 63–76.  MR 1044585 |  Zbl 0722.14032
[L07] I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Mathematical Journal 147 (2009), no. 2, 315–343. Article |  MR 2495078 |  Zbl 1175.14035
[Lu96] D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258.  MR 1417712 |  Zbl 0912.14017
[Lu97] D. Luna, Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 267–280.  MR 1635686 |  Zbl 0902.14037
[Lu01] D. Luna, Variétés sphériques de type $A$, Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226. Numdam |  MR 1896179 |  Zbl 1085.14039
[LV83] Luna, D. and Vust, T., Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.  MR 705534 |  Zbl 0545.14010
[T06] D.A. Timashev, Homogeneous spaces and equivariant embedding, arXiv:math/0602228v1. arXiv
Copyright Cellule MathDoc 2017 | Credit | Site Map